Ethylene and the responses of plants to phosphate deficiency
نویسندگان
چکیده
The consideration as to how plants uptake and transport phosphorus (P) is of significant agronomic and economic importance, in part driven by finite reserves of rock phosphate. Our understanding of these mechanisms has been greatly advanced, particularly with respect to the responses of plants to P deficiency and the genetic dissection of the signalling involved. Further, the realization that there are two tiers of transcriptional responses, the local, in which inorganic P (Pi) acts as an external signal independent of the endogenous P level, and the systemic involving root–shoot signalling, has now added a dimension of both clarity and complexity. Notwithstanding, it is now clear that the hormone ethylene plays a key role in mediating both levels of responses. This review, therefore, covers the role of ethylene in terms of mediating responses to P deficiency. The evidence that Pi supply regulates ethylene biosynthesis and sensitivity, and that this, in turn, regulates changes in root system architecture and in Pi-deprivation responses is examined here. While ethylene is the focus, the key interactions with auxin are also assessed, but interactions with the other hormone groups, which have recently been reviewed, are not covered. The emerging view that ethylene is a multi-faceted hormone in terms of mediating responses to P deficiency invites the dissection of the transcriptional cues that mediate changes in ethylene biosynthesis and/or sensitivity. Knowledge of the nature of such cues will subsequently reveal more of the underpinning interactions that govern P responses and provide avenues for the production of germplasm with an improved phosphate use efficiency.
منابع مشابه
Ethylene and plant responses to phosphate deficiency
Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory netwo...
متن کاملThe Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches
Iron (Fe) is an essential plant micronutrient but is toxic in excess. Fe deficiency chlorosis is a major constraint for plant growth and causes severe losses of crop yields and quality. Under Fe deficiency conditions, plants have developed sophisticated mechanisms to keep cellular Fe homeostasis via various physiological, morphological, metabolic, and gene expression changes to facilitate the a...
متن کاملEthylene's role in phosphate starvation signaling: more than just a root growth regulator.
Phosphate (Pi) is a common limiter of plant growth due to its low availability in most soils. Plants have evolved elaborate mechanisms for sensing Pi deficiency and for initiating adaptive responses to low Pi conditions. Pi signaling pathways are modulated by both local and long-distance, or systemic, sensing mechanisms. Local sensing of low Pi initiates major root developmental changes aimed a...
متن کاملEditorial: Ethylene's Role in Plant Mineral Nutrition
Ethylene is a gaseous plant hormone involved in many aspects of plant life, including seed germination, flower senescence, abscission, and fruit ripening (Abeles et al., 1992). It also plays a very important role in the responses of plants to both biotic and abiotic stresses (Abeles et al. The production of ethylene is tightly regulated by internal signals, and usually increases in response to ...
متن کاملIron-Deficiency Stress Responses in Cucumber (Cucumis sativus L.) Roots (A Possible Role for Ethylene?).
Most dicotyledonous species respond to Fe deficiency by developing several mechanisms known as Fe-deficiency stress responses. To study the regulation of these responses, young cucumber plants (Cucumis sativus L. cv Ashley) were grown in nutrient solution for 11 d, being deprived of Fe during the last 4 or 5 d. Inhibitors of ethylene synthesis (2 or 10 [mu]M aminoethoxyvinylglycine; 10 or 20 [m...
متن کامل